Population genetic models of genomic imprinting.

نویسندگان

  • G P Pearce
  • H G Spencer
چکیده

The phenomenon of genomic imprinting has recently excited much interest among experimental biologists. The population genetic consequences of imprinting, however, have remained largely unexplored. Several population genetic models are presented and the following conclusions drawn: (i) systems with genomic imprinting need not behave similarly to otherwise identical systems without imprinting; (ii) nevertheless, many of the models investigated can be shown to be formally equivalent to models without imprinting; (iii) consequently, imprinting often cannot be discovered by following allele frequency changes or examining equilibrium values; (iv) the formal equivalences fail to preserve some well known properties. For example, for populations incorporating genomic imprinting, parameter values exist that cause these populations to behave like populations without imprinting, but with heterozygote advantage, even though no such advantage is present in these imprinting populations. We call this last phenomenon "pseudoheterosis." The imprinting systems that fail to be formally equivalent to nonimprinting systems are those in which males and females are not equivalent, i.e., two-sex viability systems and sex-chromosome inactivation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Population models of genomic imprinting. I. Differential viability in the sexes and the analogy with genetic dominance.

Many single-locus, two-allele selection models of genomic imprinting have been shown to reduce formally to one-locus Mendelian models with a modified parameter for genetic dominance. One exception is the model where selection at the imprinted locus affects the sexes differently. We present two models of maternal inactivation with differential viability in the sexes, one with complete inactivati...

متن کامل

Influence of mom and dad: quantitative genetic models for maternal effects and genomic imprinting.

The expression of an imprinted gene is dependent on the sex of the parent it was inherited from, and as a result reciprocal heterozygotes may display different phenotypes. In contrast, maternal genetic terms arise when the phenotype of an offspring is influenced by the phenotype of its mother beyond the direct inheritance of alleles. Both maternal effects and imprinting may contribute to resemb...

متن کامل

Genetic conflicts, multiple paternity and the evolution of genomic imprinting.

We present nine diallelic models of genetic conflict in which one allele is imprintable and the other is not to examine how genomic imprinting may have evolved. Imprinting is presumed to be either maternal (i.e., the maternally derived gene is inactivated) or paternal. Females are assumed to be either completely monogamous or always bigamous, so that we may see any effect of multiple paternity....

متن کامل

مقایسه روش های مختلف آماری در انتخاب ژنومی گاوهای هلشتاین

Genomic selection combines statistical methods with genomic data to predict genetic values for complex traits.  The accuracy of prediction of genetic values ​​in selected population has a great effect on the success of this selection method. Accuracy of genomic prediction is highly dependent on the statistical model used to estimate marker effects in reference population. Various factors such a...

متن کامل

Genomic imprinting leads to less selectively maintained polymorphism on X chromosomes.

Population-genetic models are developed to investigate the consequences of viability selection at a diallelic X-linked locus subject to genomic imprinting. Under complete paternal-X inactivation, a stable polymorphism is possible under the same conditions as for paternal-autosome inactivation with differential selection on males and females. A necessary but not sufficient condition is that ther...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 130 4  شماره 

صفحات  -

تاریخ انتشار 1992